ME 7247: Advanced Control Systems

Fall 2022-23

Lecture 05: Singular Value Decomposition

Friday September 23, 2022
Lecturer: Laurent Lessard
Scribe: Mayur Bhise

Orthogonal Matrices, Singular Value Decomposition

1 Orthonormal Vectors

A vector is said to be normal if it has a length of one. Two vectors are said to be orthogonal if they're at right angles to each other (their dot product is zero). A set of vectors is said to be orthonormal if they are all normal, and each pair of vectors in the set is orthogonal.

Orthonormal vectors are usually used as a basis on a vector space. Establishing an orthonormal basis can make calculations significantly easier. For example, the length of a vector is simply the square root of the sum of the squares of its coordinates when expressed in an orthonormal basis.

Definition 1.1. A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ in \mathbb{R}^{n} is orthonormal if

$$
u_{i}^{\top} u_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

If we define the matrix $U \in \mathbb{R}^{n \times r}$ as $U=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{r}\end{array}\right]$, then the definition above is equivalent to $U^{\mathrm{\top}} U=I$. In this case, we say that U is a semi-orthogonal matrix. If $r=n$ (U is square), we say that U is an orthogonal matrix.

Some comments:

- We must have $r \leq n$ (U must be a tall matrix), because it is impossible for more than n vectors to be mutually orthogonal in an n-dimensional space.
- Since the columns of U are orthonormal, we should really call U a "semi-orthonormal matrix", but people have settled on the name "orthogonal".

Orthonormal vectors can be used as a basis for a subspace. In fact, any subspace of \mathbb{R}^{n} has an orthonormal basis. For example, consider $S=\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\}$. The vectors a_{i} are not necessarily orthogonal, but we can find a orthogonal basis for S using the Gram-Schmidt process.

Gram-Schmidt. Given a set of vectors $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$, do the following:

1. Let $u_{1}=a_{1}$, then normalize: $u_{1} \mapsto \frac{u_{1}}{\left\|u_{1}\right\|}$.
2. Let $u_{2}=a_{2}-\operatorname{proj}_{u_{1}}\left(a_{2}\right)$, then normalize: $u_{2} \mapsto \frac{u_{2}}{\left\|u_{2}\right\|}$.
3. Let $u_{3}=a_{3}-\operatorname{proj}_{u_{1}}\left(a_{3}\right)-\operatorname{proj}_{u_{2}}\left(a_{3}\right)$, then normalize: $u_{3} \mapsto \frac{u_{3}}{\left\|u_{3}\right\|}$.

We then continue in this fashion. The $k^{\text {th }}$ step of the process is $u_{k}=a_{k}-\sum_{i=1}^{k-1} \operatorname{proj}_{u_{i}}\left(a_{k}\right)$, then normalize: $u_{k} \mapsto \frac{u_{k}}{\left\|u_{k}\right\|}$. If at any point, we have $u_{i}=0$, then this means the current a_{i} is a linear combination of the previous a_{i} 's, so we can simply skip it and move onto the next a_{i}. When we are done, we will have $\operatorname{span}\left\{a_{i}\right\}=\operatorname{span}\left\{u_{i}\right\}$ with the $\left\{u_{i}\right\}$ forming are orthonormal set.

Here, $\operatorname{proj}_{b}(a)$ is the projection of a onto the vector b, given by

$$
\operatorname{proj}_{b}(a)=\frac{\langle a, b\rangle}{\langle b, b\rangle} b=\frac{a^{\top} b}{\|b\|^{2}} b
$$

When $b=u$ is a unit vector, the formula simplifies to $\operatorname{proj}_{u}(a)=\langle a, u\rangle u=\left(a^{\top} u\right) u$.
Here is a visualization of Gram-Schmidt: https://www.youtube.com/watch?v=KOkuTXrv5Gg
Orthogonal matrices as transformations. Another way to interpret orthogonal and semiorthogonal matrices is to view them as a transformation from one vector space to another (via matrix multiplication). So if $U \in \mathbb{R}^{n \times r}$ is semi-orthogonal, we think of the map $U: \mathbb{R}^{r} \rightarrow \mathbb{R}^{n}$ obtained via matrix multiplication. This transformation is an isometry; it preserves angles and distances between points.

For example, if $x \mapsto y$ (which means that $y=U x$) then we have:

$$
\langle U x, U y\rangle=(U x)^{\top}(U y)=x^{\boldsymbol{\top}} U^{\top} U y=x^{\top} y=\langle x, y\rangle
$$

In particular, if $x=y$, we have $\|U x\|=\langle U x, U x\rangle=\langle x, x\rangle=\|x\|$. So angles and distances are preserved if we transform all the points using U.

Orthogonal matrices as coordinate frames. If we have a vector $x \in \mathbb{R}^{n}$ and an orthogonal matrix $U \in \mathbb{R}^{n \times n}$, we can view the columns of $U=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ as basis vectors for \mathbb{R}^{n} and we can ask how to express x in these coordinates. Here is how:

$$
\begin{align*}
x & =\left(U U^{\top}\right) x \tag{1}\\
& =U\left(U^{\top} x\right) \tag{2}\\
& =\left(u_{1}^{\top} x\right) u_{1}+\cdots+\left(u_{n}^{\top} x\right) u_{n} \tag{3}
\end{align*}
$$

So the vector $U^{\top} x$ is the vector of coordinates that express x is the basis $\left\{u_{1}, \ldots, u_{n}\right\}$. Because these basis vectors are mutually orthogonal, the coordinates satisfy the Pythagorean theorem!

$$
\left(u_{1}^{\top} x\right)^{2}+\cdots+\left(u_{n}^{\top} x\right)^{2}=\left\|U^{\top} x\right\|^{2}=x^{\top} U U^{\top} x=x^{\top} x=\|x\|^{2}
$$

Matlab commands. Two useful commands in Matlab:

- $\mathrm{U}=\operatorname{orth}(\mathrm{A})$ returns a semi-orthogonal matrix U whose columns are an orthonormal basis for range (A). The number of columns of U is equal to $\operatorname{rank}(A)$.
- $\mathrm{V}=$ null (A) returns a semi-orthogonal matrix U whose columns are an orthonormal basis for $\operatorname{null}(A)$.

2 Singular Value Decomposition

Thin SVD. (also called the economy $S V D$) Let $A \in \mathbb{R}^{m \times n}$. There exists a factorization

$$
A=U_{1} \Sigma_{1} V_{1}^{\top}
$$

where $U_{1} \in \mathbb{R}^{m \times r}$ and $V_{1} \in \mathbb{R}^{n \times r}$ are semi-orthogonal, and $\Sigma_{1} \in \mathbb{R}^{r \times r}$ is square and diagonal with positive entries that are decreasing along the main diagonal. In other words,

$$
\Sigma_{1}=\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \tag{4}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{r}
\end{array}\right] \quad \text { with } \sigma_{1} \geq \cdots \geq \sigma_{r}>0
$$

If we decompose $U_{1}=\left[\begin{array}{lll}u_{1} & \cdots & u_{r}\end{array}\right]$ and $V_{1}=\left[\begin{array}{lll}v_{1} & \cdots & v_{r}\end{array}\right]$ into their columns, we can write A as a sum of r rank- 1 matrices:

$$
\begin{equation*}
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top} \tag{5}
\end{equation*}
$$

The σ_{i} are called the singular values of A. The u_{i} are called the left singular vectors and the v_{i} are called the right singular vectors.

Uniqueness. The thin SVD is unique in the sense that any decomposition of A of the form $A=U_{1} \Sigma_{1} V_{1}^{\top}$ described above has the same singular values. The singular vectors are not unique, however. There can be ambiguity, e.g. if we flip the sign of u_{i} and v_{i} for some particular i, the sum (5) will be unchanged.

Figure 1: The thin SVD decomposition of an $n \times d$ matrix.

Orthogonal completions. We can group the singular vectors into matrices and find orthogonal completions. In other words, if $\left\{u_{1}, \ldots, u_{r}\right\}$ are the left singular vectors, Define $\left\{u_{r+1}, \ldots, u_{m}\right\}$ so
that $\left\{u_{1}, \ldots, u_{m}\right\}$ is orthonormal. Then define the matrices:

$$
U_{1}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right], \quad U_{2}=\left[\begin{array}{lll}
u_{r+1} & \cdots & u_{m}
\end{array}\right], \quad U=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] .
$$

So $U_{1} \in \mathbb{R}^{m \times r}$ and $U_{2} \in \mathbb{R}^{m \times(m-r)}$ are semi-orthogonal, and $U \in \mathbb{R}^{m \times m}$ is orthogonal. Similarly, we can define $V_{1} \in \mathbb{R}^{n \times r}$ and $V_{2} \in \mathbb{R}^{n \times(n-r)}$ and $V \in \mathbb{R}^{n \times n}$.

We can also derive the following useful formulas, which show a correspondence between the left and right singular vectors:

$$
\begin{gathered}
A v_{i}=\sigma_{i} u_{i} \quad \text { and } \quad A^{\top} u_{i}=\sigma_{i} v_{i} \quad \text { for } i=1, \ldots, r \\
A v_{i}=0 \quad \text { and } \quad A^{\top} u_{i}=0
\end{gathered} \text { for } i \geq r+1 .
$$

The left and right singular vectors form orthonormal bases for various important subspaces:

$$
\begin{aligned}
\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} & =\operatorname{range}\left(U_{1}\right)=\operatorname{range}(A) \\
\operatorname{span}\left\{u_{r+1}, \ldots, u_{r}\right\} & =\operatorname{range}\left(U_{2}\right)=\operatorname{range}(A)^{\perp} \\
\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} & =\operatorname{range}\left(V_{1}\right)=\operatorname{null}(A)^{\perp} \\
\operatorname{span}\left\{v_{r+1}, \ldots, v_{r}\right\} & =\operatorname{range}\left(V_{2}\right)=\operatorname{null}(A) .
\end{aligned}
$$

These facts can be proved using the definitions of range and nullspace, and SVD properties. For example, here is how we would prove that range $\left(V_{2}\right)=\operatorname{null}(A)$.

1) Proof that $\operatorname{range}\left(V_{2}\right) \subseteq \operatorname{null}(A)$: Suppose $x \in \operatorname{range}\left(V_{2}\right)$. Then $x=V_{2} w$ for some w. Take the thin SVD of A and compute:

$$
A x=U_{1} \Sigma_{1} V_{1}^{\top} V_{2} w=U_{1} \Sigma_{1}\left(V_{1}^{\top} V_{2}\right) w=0
$$

The last step follows because $V_{1}^{\top} V_{2}=0$. Therefore, $x \in \operatorname{null}(A)$ and $\operatorname{range}\left(V_{2}\right) \subseteq \operatorname{null}(A)$.
2) Proof that $\operatorname{null}(A) \subseteq \operatorname{range}\left(V_{2}\right)$: Suppose $x \in \operatorname{null}(A)$. Then $A x=0$. Again, take the thin SVD of A and compute:

$$
A x=0 \quad \Longrightarrow \quad U_{1} \Sigma_{1} V_{1}^{\top} x=0 \quad \Longrightarrow \quad \Sigma_{1} V_{1}^{\top} x=0 \quad \Longrightarrow \quad V_{1}^{\top} x=0 .
$$

The second step followed by multiplying both sides by U_{1}^{\top} and using $U_{1}^{\top} U_{1}=I$. Using the fact that V is orthogonal, write $x=V V^{\top} x=V_{1}\left(V_{1}^{\top} x\right)+V_{2}\left(V_{2}^{\top} x\right)=V_{2}\left(V_{2}^{\top} x\right)$. Therefore, $x \in \operatorname{range}\left(V_{2}\right)$, and so $\operatorname{null}(A) \subseteq \operatorname{range}\left(V_{2}\right)$, and this completes the proof.

The Full SVD. Instead of using a "thin" U_{1} and V_{1} and square Σ_{1}, we can use the orthogonally completed U and V, and pad the Σ_{1} with zeros. This leads to the full SVD, which is typically just called "the SVD".

$$
A=U \Sigma V^{\top}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \tag{6}\\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{\top} \\
V_{2}^{\top}
\end{array}\right]
$$

Here, $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is the same size as A.

3 Computing the SVD

Computing the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ can be carried out as efficiently as computing the eigenvalues of a symmetric matrix of $\operatorname{size} \min (m, n)$. Consider the matrix $A^{\top} A$. Using the SVD, we have:

$$
\begin{aligned}
A^{\top} A & =\left(U \Sigma V^{\top}\right)^{\top}\left(U \Sigma V^{\top}\right) \\
& =V \Sigma^{\top}\left(U^{\top} U\right) \Sigma V^{\top} \\
& =V\left(\Sigma^{\top} \Sigma\right) V^{\top} \\
& =V\left(\Sigma^{\top} \Sigma\right) V^{-1}
\end{aligned}
$$

Now notice that $\Sigma^{\top} \Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{r}^{2}, 0, \ldots, 0\right) \in \mathbb{R}^{n \times n}$. So what we have above is actually an eigenvalue decomposition of $A^{\top} A$. We can compute this directly using our favorite eigenvalue solver, and this will tell us what the σ_{i} and corresponding v_{i} are.

This confirms some facts about linear algebra concerning symmetric matrices:

- Symmetric matrices always have real eigenvalues and the eigenvectors can be chosen to be real as well.
- Symmetric matrices are always orthogonally diagonalizable, i.e. we can always find an eigenvalue decomposition such that the eigenvectors are orthonormal.

Finding the SVD

1. Find an eigenvalue decomposition of $A^{\top} A=V \Lambda V^{-1}$. Since $A^{\top} A$ is symmetric and positive semidefinite (we'll see what this means next lecture), the eigenvalues are real and nonnegative and the eigenvectors can be chosen to be orthonormal, so we can pick V such that $V^{-1}=V^{\top}$. From the derivation above, we also have $\Lambda=\Sigma^{\top} \Sigma$, so this reveals the right singular vectors v_{i} and corresponding singular values σ_{i}.
2. Use the fact that $A v_{i}=\sigma_{i} u_{i}$ to find each of the u_{i} for $i=1, \ldots, r$.
3. Find an orthogonal completion of the u_{i} to get u_{r+1}, \ldots, u_{m} such that $U=\left[\begin{array}{lll}u_{1} & \cdots & u_{m}\end{array}\right]$ is an orthogonal matrix.

Matlab commands. Two useful commands in Matlab:

- $[U, S, V]=\operatorname{svd}(A)$ returns the full SVD of A. So U and V are orthogonal and S is the same size as A. These matrices satisfy A $=U * S * V^{\prime}$.
- $[\mathrm{U} 1, \mathrm{~S} 1, \mathrm{~V} 1]=\operatorname{svd}(\mathrm{A})$ returns the thin (economy) SVD of A. So U1 and V1 are semi-orthogonal and S1 is square (with dimension equal to the rank of A). These matrices satisfy A $=\mathrm{U} 1 * \mathrm{~S} 1 * \mathrm{~V} 1$ ' .

Under the hood, many matlab commands such as orth, null, and rank work by computing the SVD first and then extracting the desired result from U, V, and Σ.

