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Orthogonal Matrices, Singular Value Decomposition

1 Orthonormal Vectors

A vector is said to be normal if it has a length of one. Two vectors are said to be orthogonal if
they’re at right angles to each other (their dot product is zero). A set of vectors is said to be
orthonormal if they are all normal, and each pair of vectors in the set is orthogonal.

Orthonormal vectors are usually used as a basis on a vector space. Establishing an orthonormal basis
can make calculations significantly easier. For example, the length of a vector is simply the square
root of the sum of the squares of its coordinates when expressed in an orthonormal basis.

Definition 1.1. A set of vectors {u1, u2, . . . , ur} in Rn is orthonormal if

uT
i uj =

{
0 if i ̸= j

1 if i = j

If we define the matrix U ∈ Rn×r as U =
[
u1 u2 · · · ur

]
, then the definition above is equivalent

to UTU = I. In this case, we say that U is a semi-orthogonal matrix. If r = n (U is square), we
say that U is an orthogonal matrix.

Some comments:

• We must have r ≤ n (U must be a tall matrix), because it is impossible for more than n
vectors to be mutually orthogonal in an n-dimensional space.

• Since the columns of U are orthonormal, we should really call U a “semi-orthonormal matrix”,
but people have settled on the name “orthogonal”.

Orthonormal vectors can be used as a basis for a subspace. In fact, any subspace of Rn has an
orthonormal basis. For example, consider S = span{a1, a2, a3}. The vectors ai are not necessarily
orthogonal, but we can find a orthogonal basis for S using the Gram–Schmidt process.

Gram–Schmidt. Given a set of vectors {a1, a2, . . . , ar}, do the following:

1. Let u1 = a1, then normalize: u1 7→ u1
∥u1∥ .

2. Let u2 = a2 − proju1
(a2), then normalize: u2 7→ u2

∥u2∥ .

3. Let u3 = a3 − proju1
(a3)− proju2

(a3), then normalize: u3 7→ u3
∥u3∥ .
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We then continue in this fashion. The kth step of the process is uk = ak −
∑k−1

i=1 projui
(ak), then

normalize: uk 7→ uk
∥uk∥ . If at any point, we have ui = 0, then this means the current ai is a linear

combination of the previous ai’s, so we can simply skip it and move onto the next ai. When we are
done, we will have span{ai} = span{ui} with the {ui} forming are orthonormal set.

Here, projb(a) is the projection of a onto the vector b, given by

projb(a) =
⟨a, b⟩
⟨b, b⟩

b =
aTb

∥b∥2
b

When b = u is a unit vector, the formula simplifies to proju(a) = ⟨a, u⟩u = (aTu)u.

Here is a visualization of Gram–Schmidt: https://www.youtube.com/watch?v=KOkuTXrv5Gg

Orthogonal matrices as transformations. Another way to interpret orthogonal and semi-
orthogonal matrices is to view them as a transformation from one vector space to another (via
matrix multiplication). So if U ∈ Rn×r is semi-orthogonal, we think of the map U : Rr → Rn

obtained via matrix multiplication. This transformation is an isometry ; it preserves angles and
distances between points.

For example, if x 7→ y (which means that y = Ux) then we have:

⟨Ux,Uy⟩ = (Ux)T(Uy) = xTUTUy = xTy = ⟨x, y⟩

In particular, if x = y, we have ∥Ux∥ = ⟨Ux,Ux⟩ = ⟨x, x⟩ = ∥x∥. So angles and distances are
preserved if we transform all the points using U .

Orthogonal matrices as coordinate frames. If we have a vector x ∈ Rn and an orthogonal
matrix U ∈ Rn×n, we can view the columns of U =

[
u1 · · · un

]
as basis vectors for Rn and we

can ask how to express x in these coordinates. Here is how:

x = (UUT)x (1)

= U(UTx) (2)

= (uT
1 x)u1 + · · ·+ (uT

nx)un (3)

So the vector UTx is the vector of coordinates that express x is the basis {u1, . . . , un}. Because
these basis vectors are mutually orthogonal, the coordinates satisfy the Pythagorean theorem!

(uT
1 x)

2 + · · ·+ (uT
nx)

2 = ∥UTx∥2 = xTUUTx = xTx = ∥x∥2

Matlab commands. Two useful commands in Matlab:

• U = orth(A) returns a semi-orthogonal matrix U whose columns are an orthonormal basis
for range(A). The number of columns of U is equal to rank(A).

• V = null(A) returns a semi-orthogonal matrix U whose columns are an orthonormal basis
for null(A).
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2 Singular Value Decomposition

Thin SVD. (also called the economy SVD) Let A ∈ Rm×n. There exists a factorization

A = U1Σ1V
T
1

where U1 ∈ Rm×r and V1 ∈ Rn×r are semi-orthogonal, and Σ1 ∈ Rr×r is square and diagonal with
positive entries that are decreasing along the main diagonal. In other words,

Σ1 =

σ1 · · · 0
...

. . .
...

0 · · · σr

 with σ1 ≥ · · · ≥ σr > 0 (4)

If we decompose U1 =
[
u1 · · · ur

]
and V1 =

[
v1 · · · vr

]
into their columns, we can write A as

a sum of r rank-1 matrices:

A =

r∑
i=1

σiuiv
T
i (5)

The σi are called the singular values of A. The ui are called the left singular vectors and the vi are
called the right singular vectors.

Uniqueness. The thin SVD is unique in the sense that any decomposition of A of the form
A = U1Σ1V

T
1 described above has the same singular values. The singular vectors are not unique,

however. There can be ambiguity, e.g. if we flip the sign of ui and vi for some particular i, the sum
(5) will be unchanged.

Figure 1: The thin SVD decomposition of an n× d matrix.

Orthogonal completions. We can group the singular vectors into matrices and find orthogonal
completions. In other words, if {u1, . . . , ur} are the left singular vectors, Define {ur+1, . . . , um} so
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that {u1, . . . , um} is orthonormal. Then define the matrices:

U1 =
[
u1 · · · ur

]
, U2 =

[
ur+1 · · · um

]
, U =

[
U1 U2

]
.

So U1 ∈ Rm×r and U2 ∈ Rm×(m−r) are semi-orthogonal, and U ∈ Rm×m is orthogonal. Similarly,
we can define V1 ∈ Rn×r and V2 ∈ Rn×(n−r) and V ∈ Rn×n.

We can also derive the following useful formulas, which show a correspondence between the left and
right singular vectors:

Avi = σiui and ATui = σivi for i = 1, . . . , r

Avi = 0 and ATui = 0 for i ≥ r + 1

The left and right singular vectors form orthonormal bases for various important subspaces:

span{u1, . . . , ur} = range(U1) = range(A)

span{ur+1, . . . , ur} = range(U2) = range(A)⊥

span{v1, . . . , vr} = range(V1) = null(A)⊥

span{vr+1, . . . , vr} = range(V2) = null(A).

These facts can be proved using the definitions of range and nullspace, and SVD properties. For
example, here is how we would prove that range(V2) = null(A).

1) Proof that range(V2) ⊆ null(A): Suppose x ∈ range(V2). Then x = V2w for some w. Take the
thin SVD of A and compute:

Ax = U1Σ1V
T
1 V2w = U1Σ1(V

T
1 V2)w = 0.

The last step follows because V T
1 V2 = 0. Therefore, x ∈ null(A) and range(V2) ⊆ null(A).

2) Proof that null(A) ⊆ range(V2): Suppose x ∈ null(A). Then Ax = 0. Again, take the thin
SVD of A and compute:

Ax = 0 =⇒ U1Σ1V
T
1 x = 0 =⇒ Σ1V

T
1 x = 0 =⇒ V T

1 x = 0.

The second step followed by multiplying both sides by UT
1 and using UT

1 U1 = I. Using the
fact that V is orthogonal, write x = V V Tx = V1(V

T
1 x) + V2(V

T
2 x) = V2(V

T
2 x). Therefore,

x ∈ range(V2), and so null(A) ⊆ range(V2), and this completes the proof. ■

The Full SVD. Instead of using a “thin” U1 and V1 and square Σ1, we can use the orthogonally
completed U and V , and pad the Σ1 with zeros. This leads to the full SVD, which is typically just
called “the SVD”.

A = UΣV T =
[
U1 U2

] [Σ1 0
0 0

] [
V T
1

V T
2

]
(6)

Here, U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is the same size as A.
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3 Computing the SVD

Computing the SVD of a matrix A ∈ Rm×n can be carried out as efficiently as computing the
eigenvalues of a symmetric matrix of size min(m,n). Consider the matrix ATA. Using the SVD,
we have:

ATA =
(
UΣV T

)T (
UΣV T

)
= V ΣT

(
UTU

)
ΣV T

= V (ΣTΣ)V T

= V (ΣTΣ)V −1

Now notice that ΣTΣ = diag(σ2
1, σ

2
2, . . . , σ

2
r , 0, . . . , 0) ∈ Rn×n. So what we have above is actually

an eigenvalue decomposition of ATA. We can compute this directly using our favorite eigenvalue
solver, and this will tell us what the σi and corresponding vi are.

This confirms some facts about linear algebra concerning symmetric matrices:

• Symmetric matrices always have real eigenvalues and the eigenvectors can be chosen to be
real as well.

• Symmetric matrices are always orthogonally diagonalizable, i.e. we can always find an eigen-
value decomposition such that the eigenvectors are orthonormal.

Finding the SVD

1. Find an eigenvalue decomposition of ATA = V ΛV −1. Since ATA is symmetric and positive
semidefinite (we’ll see what this means next lecture), the eigenvalues are real and nonnegative
and the eigenvectors can be chosen to be orthonormal, so we can pick V such that V −1 = V T.
From the derivation above, we also have Λ = ΣTΣ, so this reveals the right singular vectors
vi and corresponding singular values σi.

2. Use the fact that Avi = σiui to find each of the ui for i = 1, . . . , r.

3. Find an orthogonal completion of the ui to get ur+1, . . . , um such that U =
[
u1 · · · um

]
is

an orthogonal matrix.

Matlab commands. Two useful commands in Matlab:

• [U,S,V] = svd(A) returns the full SVD of A. So U and V are orthogonal and S is the same
size as A. These matrices satisfy A = U*S*V'.

• [U1,S1,V1] = svd(A) returns the thin (economy) SVD of A. So U1 and V1 are semi-orthogonal
and S1 is square (with dimension equal to the rank of A). These matrices satisfy A = U1*S1*V1'.

Under the hood, many matlab commands such as orth, null, and rank work by computing the
SVD first and then extracting the desired result from U , V , and Σ.
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